UNIT- 9 - APPLICATIONS OF INTEGRATION

I. Answer the Following (2 marks)

1. Evaluate : $\int_{0}^{3}\left(3 x^{2}-4 x+5\right) \mathrm{dx}$.
2. Evaluate: $\int_{0}^{1} \frac{2 x+7}{5 x^{2}+9} d x$.
3. Evaluate: $\int_{0}^{9} \frac{1}{x+\sqrt{x}} d x$.
4. Evaluate : $\int_{1}^{2} \frac{x}{(x+1)(x+2)} d x$.
5. Evaluate : $\int_{0}^{\frac{\pi}{2}} \frac{\cos \theta}{(1+\sin \theta)(2+\sin \theta)} d \theta$.
6. Evaluate : $\int_{0}^{\frac{1}{\sqrt{2}}} \frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{\frac{3}{2}}} d x$.
7. Evaluate : $\int_{0}^{1.5}\left[\mathrm{x}^{2}\right] \mathrm{dx}$, where $[\mathrm{x}]$ is the greatest integer function.
8. Evaluate : $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x d x$.
9. Evaluate : $\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x}+\sqrt{x}} d x$.
10. Evaluate the following definite integrals : $\int_{0}^{1} \sqrt{\frac{1-\mathrm{x}}{1+\mathrm{x}}} \mathrm{dx}$
11. Evaluate the following integrals using properties of integration:
(i) $\quad \int_{-5}^{5} x \cos \left(\frac{e^{x}-1}{e^{x}+1}\right) d x$
(ii) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin ^{2} x d x$
12. Evaluate : $\int_{0}^{1} e^{-2 x}\left(1+x-2 x^{3}\right) d x$.
13. Evaluate the following: $\int_{0}^{1} x^{3} e^{-2 x} d x$
14. Evaluate $\int_{0}^{\frac{\pi}{2}}\left(\sin ^{2} x+\cos ^{4} x\right) d x$
15. Evaluate $\int_{0}^{1} x^{5}\left(1-x^{2}\right)^{5} d x$.
16. Evaluate the following:
(i) $\int_{0}^{\frac{\pi}{2}} \sin ^{10} x d x$
(ii) $\quad \int_{0}^{\frac{\pi}{2}} \cos ^{7} x d x$
17. Find the area of the region bounded between the curves $\mathrm{y}=\sin \mathrm{x}$ and $\mathrm{y}=\cos \mathrm{x}$ and the lines $\mathrm{x}=0$ and $\mathrm{x}=\pi$.
18. Find the area of the region bounded by $y=\tan x, y=\cot x$ and the lines $x=0, x=\frac{\pi}{2}, y=0$.
19. Find the area of the region bounded by the parabola $y^{2}=x$ and the line $y=x-2$.
20. Find the volume of a sphere of radius a.
21. Find, by integration, the volume of the solid generated by revolving about the x-axis, the region enclosed by $\mathrm{y}=2 \mathrm{x}^{2}, \mathrm{y}=0$ and $\mathrm{x}=1$.
22. Find, by integration, the volume of the solid generated by revolving about the x-axis, the region enclosed by $y=e^{-2 x} y=0, x=0$ and $x=1$.

II. Answer the Following (3 Marks)

1. Find an approximate value of $\int_{1}^{1.5} \mathrm{x}^{2} \mathrm{dx}$ by applying the right-end rule with the partition $\{1.1,1.2,1.3,1.4$, $1.5\}$.
2. Find an approximate value of $\int_{1}^{1.5}(2-x)$ dx by applying the mid-point rule with the partition $\{1.1,1.2,1.3$, 1.4, 1.5\}.
3. Evaluate the following integrals as the limits of sums:
(i) $\quad \int_{0}^{1}(5 x+4) d x$
(ii) $\int_{1}^{2}\left(4 x^{2}-1\right) d x$
4. Evaluate: $\int_{0}^{\frac{\pi}{2}}(\sqrt{\tan x}+\sqrt{\cot x}) d x$.
5. Show that $\int_{0}^{\frac{\pi}{2}} \frac{d x}{4+5 \sin x}=\frac{1}{3} \log _{e} 2$.
6. Prove that $\int_{0}^{\frac{\pi}{4}} \frac{d x}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x}=\frac{1}{a b} \tan ^{-1}\left(\frac{a}{b}\right)$, where $\mathrm{a}, \mathrm{b}>0$.
7. Evaluate the following definite integrals: $\int_{3}^{4} \frac{\mathrm{dx}}{\mathrm{x}^{2}-4}$.
8. Evaluate the following:
(i) $\quad \int_{0}^{2 \pi} \sin ^{7} \frac{x}{4} d x$
(ii) $\int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta \cos ^{5} \theta d \theta$
(iii)
$\int_{0}^{1} x^{2}(1-x)^{3} d x$
9. Evaluate the following
(i) $\int_{0}^{\infty} x^{5} e^{-3 x} d x$
(ii) $\int_{0}^{\frac{\pi}{2}} \frac{e^{-\tan x}}{\cos ^{6} x} d x$
10. If $\int_{0}^{-} e^{-a x^{2}} x^{3} d x=32, \alpha \mid>0$, find α.
11. Find the area of the region bounded by $3 x-2 y+6=0, x=-3, x=1$ and $x-$ axis.
12. Find the area of the region bounded by $2 x-y+1=0, y=-1, y=3$ and $y-$ axis.
13. Find the area of the region bounded by the curve $2+x-x^{2}+y=0, x-$ axis, $x=-3$ and $x=3$.
14. Find, by integration, the volume of the solid generated by revolving about y-axis the region bounded between the parabola $x=y^{2}+1$, the y-axis, and the lines $y=1$ and $y=-1$.
15. Find, by integration, the volume of the solid generated by revolving about y-axis the region bounded between the curve $\mathrm{y}=\frac{3}{4} \sqrt{\mathrm{x}^{2}-16}, \mathrm{x} \geq 4$, the y -axis, and the lines $\mathrm{y}=1$ and $\mathrm{y}=6$.

III. Answer the Following (5 Marks)

1. Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{1}{\sin x+\cos x} d x$.
2. Prove that $\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x=\frac{\pi}{8} \log 2$.
3. Evaluate the following integrals using properties of integration :
$\int_{0}^{\sin ^{2} x} \sin ^{-1} \sqrt{t} d t+\int_{0}^{\cos ^{2} x} \cos ^{-1} \sqrt{t} d t$
(ii) $\int_{0}^{1} \frac{\log (1+\mathrm{x})}{1+\mathrm{x}^{2}} \mathrm{dx}$
(iii) $\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} \frac{1}{1+\sqrt{\tan \mathrm{x}}} \mathrm{dx}$
4. Evaluate the following
(i) $\int_{0}^{\frac{1}{\sqrt{2}}} \frac{e^{\sin ^{-1} x} \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$
(ii) $\int_{0}^{\frac{\pi}{2}} x^{2} \cos 2 x d x$
5. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d x}{4 \sin ^{2} x+5 \cos ^{2} x}$.
6. Evaluate the following:
(i) $\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+5 \cos ^{2} x}$
(ii) $\int_{0}^{\frac{\pi}{2}} \frac{d x}{5+4 \sin ^{2} x}$
7. Find the area of the region bounded by the line $7 x-5 y=35, x-$ axis and the lines $x=-2$ and $x=3$.
8. Find the area of the region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
9. Find the area of the region bounded by the y-axis and the parabola $x=5-4 y-y^{2}$.
10. Find the area of the region bounded by $y=\cos x, y=\sin x$, the lines $x=\frac{\pi}{4}$ and $x=\frac{5 \pi}{4}$.
11. Find the area of the region bounded between the parabola $x^{2}=y$ and the curve $y=|x|$.
12. Using integration find the area of the region bounded by triangle ABC , whose vertices A, B, and C are $(-1,1),(3,2)$, and $(0,5)$ respectively.
13. Find the area of the region common to the circle $x^{2}+y^{2}=16$ and the parabola $y^{2}=6 x$.
14. Find the volume of a right-circular cone of base radius r and height h.
15. The region enclosed between the graphs of $y=x$ and $y=x^{2}$ is denoted by R, Find the volume generated when R is rotated through 360° about x-axis.
16. Find, by integration, the volume of the container which is in the shape of a right circular conical frustum as shown in the Figure
17. A watermelon has an ellipsoid shape which can be obtained by revolving an ellipse
 with major-axis 20 cm and minor-axis 10 cm about its major-axis. Find its volume using integration.
