I. Answer the Following (2 marks)

1. Evaluate:
$$\int_0^3 (3x^2 - 4x + 5) dx$$
.

2. Evaluate:
$$\int_0^1 \frac{2x+7}{5x^2+9} dx$$
.

3. Evaluate:
$$\int_0^9 \frac{1}{x + \sqrt{x}} dx$$
.

4. Evaluate :
$$\int_{1}^{2} \frac{x}{(x+1)(x+2)} dx$$
.

5. Evaluate :
$$\int_0^{\frac{\pi}{2}} \frac{\cos \theta}{(1+\sin \theta)(2+\sin \theta)} d\theta.$$

6. Evaluate:
$$\int_0^{\frac{1}{\sqrt{2}}} \frac{\sin^{-1} x}{(1-x^2)^{\frac{3}{2}}} dx.$$

7. Evaluate:
$$\int_0^{1.5} [x^2] dx$$
, where [x] is the greatest integer function.

8. Evaluate :
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x \, dx.$$

9. Evaluate :
$$\int_2^3 \frac{\sqrt{x}}{\sqrt{5-x} + \sqrt{x}} dx$$
.

10. Evaluate the following definite integrals :
$$\int_0^1 \sqrt{\frac{1-x}{1+x}} dx$$

(i)
$$\int_{-5}^{5} x \cos\left(\frac{e^{x}-1}{e^{x}+1}\right) dx$$

(ii)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 x \, dx$$

(i)
$$\int_{-5}^{5} x \cos\left(\frac{e^{x}-1}{e^{x}+1}\right) dx$$
 (ii) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^{2} x dx$ 12. Evaluate : $\int_{0}^{1} e^{-2x} (1+x-2x^{3}) dx$.

13. Evaluate the following:
$$\int_0^1 x^3 e^{-2x} dx$$

$$St. \ Joseph \ Study \ Centre$$
14. Evaluate $\int_0^{\frac{\pi}{2}} (\sin^2 x + \cos^4 x) dx$
Puducherry, Ph. No.: 9042247637

14. Evaluate
$$\int_0^{\frac{\pi}{2}} (\sin^2 x + \cos^4 x) dx$$

15. Evaluate
$$\int_0^1 x^5 (1 - x^2)^5 dx$$
.

16. Evaluate the following: (i)
$$\int_0^{\frac{\pi}{2}} \sin^{10} x \, dx$$
 (ii) $\int_0^{\frac{\pi}{2}} \cos^7 x \, dx$

(ii)
$$\int_0^{\frac{\pi}{2}} \cos^7 x \, dx$$

17. Find the area of the region bounded between the curves
$$y = \sin x$$
 and $y = \cos x$ and the lines $x = 0$ and $x = \pi$.

18. Find the area of the region bounded by
$$y = \tan x$$
, $y = \cot x$ and the lines $x = 0, x = \frac{\pi}{2}$, $y = 0$.

19. Find the area of the region bounded by the parabola
$$y^2 = x$$
 and the line $y = x - 2$.

21. Find, by integration, the volume of the solid generated by revolving about the x-axis, the region enclosed by
$$y = 2x^2$$
, $y = 0$ and $x = 1$.

22. Find, by integration, the volume of the solid generated by revolving about the x-axis, the region enclosed by
$$y = e^{-2x}$$
 $y = 0$, $x = 0$ and $x = 1$.

II. Answer the Following (3 Marks)

- 1. Find an approximate value of $\int_1^{1.5} x^2 dx$ by applying the right-end rule with the partition {1.1, 1.2, 1.3, 1.4,
- 2. Find an approximate value of $\int_1^{1.5} (2-x) dx$ by applying the mid-point rule with the partition {1.1, 1.2, 1.3,
- 3. Evaluate the following integrals as the limits of sums:
- $\int_0^1 (5x + 4) dx$ (ii) $\int_1^2 (4x^2 1) dx$
- 4. Evaluate: $\int_0^{\frac{\pi}{2}} (\sqrt{\tan x} + \sqrt{\cot x}) dx$.
- 5. Show that $\int_0^{\frac{\pi}{2}} \frac{dx}{4+5 \sin x} = \frac{1}{2} \log_e 2$.
- 6. Prove that $\int_0^{\frac{\pi}{4}} \frac{dx}{a^2 \sin^2 x + b^2 \cos^2 x} = \frac{1}{ab} \tan^{-1} \left(\frac{a}{b}\right)$, where a, b > 0.
- 7. Evaluate the following definite integrals: $\int_3^4 \frac{dx}{x^2-4}$.
- 8. Evaluate the following:

 - (i) $\int_0^{2\pi} \sin^7 \frac{x}{4} dx$ (ii) $\int_0^{\frac{\pi}{2}} \sin^3 \theta \cos^5 \theta d\theta$
- (iii) $\int_0^1 x^2 (1-x)^3 dx$

- Evaluate the following (i) $\int_0^\infty x^5 e^{-3x} dx$ (ii) $\int_0^{\frac{\pi}{2}} \frac{e^{-\tan x}}{\cos^6 x} dx$
- 10. If $\int_0^- e^{-ax^2} x^3 dx = 32$, $\alpha | > 0$, find α .
- 11. Find the area of the region bounded by 3x 2y + 6 = 0, x = -3, x = 1 and x axis.
- 12. Find the area of the region bounded by 2x y + 1 = 0, y = -1, y = 3 and y axis.
- 13. Find the area of the region bounded by the curve $2+x-x^2+y=0$, x axis, x=-3 and x=3.
- 14. Find, by integration, the volume of the solid generated by revolving about y-axis the region bounded between the parabola $x = y^2 + 1$, the y-axis, and the lines y = 1 and y = -1.
- 15. Find, by integration, the volume of the solid generated by revolving about y-axis the region bounded between the curve $y = \frac{3}{4}\sqrt{x^2 - 16}$, $x \ge 4$, the y-axis, and the lines y = 1 and y = 6.

III. Answer the Following (5 Marks)

- 1. Evaluate $\int_0^{\frac{\pi}{4}} \frac{1}{\sin x + \cos x} dx$.
- 2. Prove that $\int_0^{\frac{\pi}{4}} \log(1 + \tan x) dx = \frac{\pi}{8} \log 2$.
- 3. Evaluate the following integrals using properties of integration:
 - $\int_0^{\sin^2 x} \sin^{-1} \sqrt{t} \ dt + \int_0^{\cos^2 x} \cos^{-1} \sqrt{t} \ dt \qquad (ii) \qquad \int_0^1 \frac{\log(1+x)}{1+x^2} \ dx \qquad \qquad (iii) \qquad \int_{\frac{\pi}{2}}^{\frac{3\pi}{8}} \frac{1}{1+\sqrt{\tan x}} \ dx$

- 4. Evaluate the following: (i) $\int_0^{\frac{1}{\sqrt{2}}} \frac{e^{\sin^{-1} x} \sin^{-1} x}{\sqrt{1-x^2}} dx$ (ii) $\int_0^{\frac{\pi}{2}} x^2 \cos 2x dx$

5. Evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{4\sin^2 x + 5\cos^2 x}$

- 6. Evaluate the following:
- $\int_0^{\frac{\pi}{2}} \frac{dx}{1 + 5\cos^2 x}$ (ii) $\int_0^{\frac{\pi}{2}} \frac{dx}{5 + 4\sin^2 x}$
- Find the area of the region bounded by the line 7x 5y = 35, x axis and the lines x = -2 and x = 3.
- 8. Find the area of the region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 9. Find the area of the region bounded by the y -axis and the parabola $x = 5 4y y^2$.
- 10. Find the area of the region bounded by $y = \cos x$, $y = \sin x$, the lines $x = \frac{\pi}{4}$ and $x = \frac{5\pi}{4}$.
- 11. Find the area of the region bounded between the parabola $x^2 = y$ and the curve y = |x|.
- 12. Using integration find the area of the region bounded by triangle ABC, whose vertices A, B, and C are (-1,1), (3, 2), and (0,5) respectively.
- 13. Find the area of the region common to the circle $x^2 + y^2 = 16$ and the parabola $y^2 = 6x$.
- 14. Find the volume of a right-circular cone of base radius r and height h.
- 15. The region enclosed between the graphs of y = x and $y = x^2$ is denoted by R, Find the volume generated when R is rotated through 360° about x-axis.
- 16. Find, by integration, the volume of the container which is in the shape of a right circular conical frustum as shown in the Figure
- 17. A watermelon has an ellipsoid shape which can be obtained by revolving an ellipse with major-axis 20 cm and minor-axis 10 cm about its major-axis. Find its volume using integration.

St. Joseph Study Centre Puducherry, Ph. No.: 904224763