(St. Joseph Study Centre

I. Answer the Following (2 marks)

- 1. Find the derivatives of the following functions with respect to corresponding independent variables:
 - (i) $f(x) = x 3 \sin x$ (ii) $y = \sin x + \cos x$ (iii) $f(x) = x \sin x$

 (iv) $y = \sin x^{\circ}$ (v) $y = \log_{10} x$
- 2. Differentiate : $y = (x^3 1)^{100}$.
- 3. Find $\frac{dy}{dx}$ if $x^2 + y^2 = 1$.
- 4. Differentiate $y = x^{\sqrt{x}}$.
- 5. Find $\frac{dy}{dx}$ if $x = at^2$; 2at, $t \neq 0$.

II. Answer the Following (3 marks)

1. Find the derivatives of the following functions with respect to corresponding independent variables:

	(i) $y = e^x \sin x$ (ii) $y = \frac{\tan x}{x}$		(iii) $y = \frac{\sin x}{1 + \cos x}$		(iv) $y = \frac{x}{\sin x + c}$	cos x		
2.	Find the derivative of the function g((t) = ($\left(\frac{t-2}{2t+1}\right)^9$					
3.	Differentiate the following :							
	(i) $y = (x^2 + 4x + 6)^5$		(ii) $y = \tan 3x$		(iii) $y = sin(e^x)$)		
	(iv) $f(t) = \sqrt[3]{1 + \tan t}$	(v) $y = (1 + \cos^2 x)^6$						
4.	Find $\frac{dy}{dx}$ if sin y = y cos 2x.	Pud	cherry, Ph. No.: 904224	47637				
5.	If $y = \tan^{-1}\left(\frac{1+x}{1-x}\right)$, find y'.							
6.	Find $\frac{dy}{dx}$ if $x = a(t - \sin t)$, $y = a(1 - \cos t)$	s t).						
7.	Find the derivatives of the following:	:	(i) $y = x^{\cos x}$	(ii) x ^y	$= y^x$	(iii)	$\frac{x^2}{a^2} + \frac{y^2}{b^2}$	$\frac{2}{2} = 1$

8. If
$$y = e^{\tan -1x}$$
, show that $(1+x^2) y'' + (2x-1)y' = 0$.

III. Answer the Following (5 marks)

1. Differentiate the following : (i) $s(t) = \sqrt[4]{\frac{t^3+1}{t^3-1}}$ (ii) $y = \frac{\sin^2 x}{\cos x}$ (iii) $y = \frac{e^{3x}}{1+e^x}$ (iv) $y = \sqrt{x + \sqrt{x} + \sqrt{x}}$ (v) $y = \sin(\tan(\sqrt{\sin x}))$ (vi) $y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$

11th Maths - Chapter -10- Differential Calculus - Prepared by Selvaraj

- 2. Find the derivative of x^x with respect to $x \log x$.
- 3. Find the derivative of $\tan^{-1}(1 + x^2)$ with respect to $x^2 + x + 1$.
- 4. Find the derivatives of the following

(i)
$$\tan^{-1}\sqrt{\frac{1-\cos x}{1+\cos x}}$$
 (ii) $\tan^{-1}\left(\frac{6x}{1-9x^2}\right)$ (iii) $x = \frac{1-t^2}{1+t^2}, y = \frac{2t}{1+t^2}$ (iv) $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$

- 5. Find the derivative of $\sin x^2$ with respect to x^2 .
- 6. Find the derivative of $\sin^{-1}\left(\frac{\sin x}{1+x^2}\right)$ with respect to $\tan^{-1} x$.
- 7. If $u = \tan^{-1} \frac{\sqrt{1+x^2}-1}{x}$ and $v = \tan^{-1} x$, find $\frac{du}{dv}$.
- 8. If $y = \frac{\sin^{-1}x}{\sqrt{1-x^2}}$, show that $(1 x^2) y_2 3xy_1 y = 0$.
- 9. If $x = a (\theta + \sin \theta)$, $y = a (1 \cos \theta)$ then prove that at $\theta = \frac{\pi}{2}$, $y'' \frac{1}{a}$.
- 10. If $y = (\cos^{-1} x)^2$, prove that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} 2 = 0$. Hence find y_2 when x = 0.

St. Joseph Study Centre Puducherry, Ph. No.: 9042247637