(F) ST.JOSEPH STUDY CENTRE

$12^{\text {th }}$ STD: Revision Test - 3
MATHS
Time: $\mathbf{3}$ Hrs / Total Marks: 100
PART - I
i. All question are compulsory.
[20 $\times 1=20]$
ii. Choose the most appropriate answer the given four alternatives and write the option code and the corresponding answer.

1. If $\sin ^{-1} x=2 \sin ^{-1} \alpha$ has a solution, then \qquad -.
a. $|\alpha| \leq \frac{1}{\sqrt{2}}$
b. $|\alpha| \geq \frac{1}{\sqrt{2}}$
c. $|\alpha|<\frac{1}{\sqrt{2}}$
d. $|\alpha|>\frac{1}{\sqrt{2}}$
2. The value of $\cos ^{-1}(-1)+\tan ^{-1}(\infty)+\sin ^{-1} 1=$ \qquad .
a. $-\pi$
b. $\frac{3 \pi}{2}$
c. 30°
d. 2π
3. The area between $y^{2}=4 x$ and its latus rectum is \qquad .
a. $\frac{2}{3}$
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. $\frac{5}{3}$
4. $\int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x$ if \qquad .
a. $f(2 a-x)=f(x)$
b. $f(a-x)=f(x)$
c. $f(x)=-f(x)$
d. $f(-x)=f(x)$
5. The general solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}$ is \qquad .
a. $\quad x y=k$
b. $\mathrm{y}=\mathrm{k} \log \mathrm{x}$
c. $y=k x$
d. $\log y=k x$
6. P is the amount of certain substance left in after time t . If the rate of evaporation of the substance is proportional to the amount remaining, then \qquad .
a. $P=c e^{k t}$
b. $P=c e^{-k t}$
c. $\mathrm{P}=\mathrm{ckt}$
d. $\mathrm{Pt}=\mathrm{c}$
7. If $P\{X=0\}=1-P\{X=1\}$. If $E[X]=3 \operatorname{Var}(X)$, then $P\{X=0\}$.
a. $\frac{2}{3}$
b. $\frac{2}{5}$
c. $\frac{1}{5}$
d. $\frac{1}{3}$
8. If the function $\mathrm{f}(\mathrm{x})=\frac{1}{12}$ for $\mathrm{a}<\mathrm{x}<\mathrm{b}$, represents a probability density function of a continuous random variable X , then which of the following cannot be the value of a and b ?
a. 0 and 12
b. 5 and 17
c. 7 and 19
d. 16 and 24
9. The equation $\tan ^{-1} x-\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$ has \qquad .
a. no solution
b. unique solution
c. two solutions
d. infinite number of solution
10. $\sin ^{-1}\left(3 \frac{x}{2}\right)+\cos ^{-1}\left(3 \frac{x}{2}\right)=$ \qquad .
a. $\frac{3 \pi}{2}$
b. 6 x
c. 3 x
d. $\frac{\pi}{2}$
11. The value of $\int_{0}^{1}\left(\sin ^{-1} x\right)^{2} d x$ is \qquad .
a. $\frac{\pi^{2}}{4}-1$
b. $\frac{\pi^{2}}{4}+2$
c. $\frac{\pi^{2}}{4}+1$
d. $\frac{\pi^{2}}{4}-2$
12. The integrating factor of the differential equation $\frac{d y}{d x}+p(x) y=Q(x)$ is x, then $P(x)=$ \qquad .
a. x
b. $\frac{\mathrm{x}^{2}}{2}$
c. $\frac{1}{x}$
d. $\frac{1}{x^{2}}$
13. The number of arbitrary constants in the general solutions of order n and $n+1$ are respectively \qquad .
a. $\mathrm{n}-1, \mathrm{n}$
b. $\mathrm{n}, \mathrm{n}+1$
c. $\mathrm{n}+1, \mathrm{n}+2$
d. $\mathrm{n}+1, \mathrm{n}$
14. If $\cot ^{-1} 2$ and $\cot ^{-1} 3$ are two angles of a triangle, then the third angle is \qquad .
a. $\frac{\pi}{4}$
b. $\frac{3 \pi}{4}$
c. $\frac{\pi}{6}$
d. $\frac{\pi}{3}$
15. $\sec ^{-1}\left(\frac{2}{3}\right)+\operatorname{cosec}^{-1}\left(\frac{2}{3}\right)=$ \qquad _.
a. $\frac{-\pi}{2}$
b. $\frac{\pi}{2}$
c. π
d. $-\pi$
16. The value of $\int_{-1}^{2}|x| d x$ is \qquad .
a. $\frac{1}{2}$
b. $\frac{3}{2}$
c. $\frac{5}{2}$
d. $\frac{7}{2}$
17. $\int_{0}^{2 a} f(x) d x=0$ if \qquad -.
a. $\quad f(2 a-x)=f(x)$
b. $f(2 a-x)=-f(x)$
c. $f(x)=-f(x)$
d. $f(-x)=f(x)$
18. The population P in any year t is such that the rate of increase in the population is proportional to the population. Then \qquad —.
a. $\quad P=c e^{k} t$
b. $\mathrm{P}=c \mathrm{e}^{-\mathrm{kt}}$
c. $\mathrm{P}=\mathrm{c}^{\mathrm{kt}}$
d. $P=c$
19. On a multiple - choice exam with 3 possible destructives for each of the 5 equations, the probability that a student will get or more correct answers just by guessing is \qquad .
a. $\frac{11}{243}$
b. $\frac{3}{8}$
c. $\frac{1}{243}$
d. $\frac{5}{243}$
20. Consider a game where the player tosses a six - sided fair die. If the face that comes up is 6 , the player wins ₹ 36 , otherwise he loses $₹ \mathrm{k}^{2}$, where k is the face that comes up $\mathrm{k}=\{1,2,3,4,5\}$. The expected amount to win at this game in ₹ is \qquad .
a. $\frac{19}{6}$
b. $-\frac{19}{6}$
c. $\frac{3}{2}$
d. $-\frac{3}{2}$

PART - II

i. Answer ant SEVEN Questions.
ii. Question Number 30 is compulsory.
21. Evaluate $\int_{0}^{3}\left(3 x^{2}-4 x+5\right) d x$
22. Solve $\left(1+x^{2}\right) \frac{d y}{d x}=1+y^{2}$
23. A condition random variable x has the p.d.f defined by $f(x)=\left\{\begin{array}{ll}\mathrm{Ce}^{-a x}, & 0<x<\infty \\ 0, & \text { elsewhere }\end{array}\right.$ the value of C if $\mathrm{a}>0$.
24. Find the value of $\sin -1\left(\sin \left(\frac{5 \pi}{4}\right)\right)$
25. Evaluate : $\int_{0}^{\pi / 4} \frac{\sin ^{3} x}{\cos ^{5} x} d x$
26. Show that the following expressions is a solution of the corresponding given differential equation. $y=2 x^{2} ; x y^{\prime}=2 y$
27. For the distribution function given by $F(x)=\left\{\begin{array}{cl}0 & x<0 \\ x^{2} & 0 \leq x \leq 1 \text {, find the density function. } \\ 1 & x>1\end{array}\right.$

Also evaluate $\mathrm{P}(0.5<\mathrm{X}<0.75)$.
28. Evaluate $: \int_{-\pi / 4}^{\pi / 4} x^{3} \sin ^{2} x d x$
29. Find the constant C such that the function $f(x)=\left\{\begin{array}{cc}C x^{2} & 1<x<4 \\ 0 & \text { Otherwise }\end{array}\right.$ is a density function.
30. If $f(x)=\left\{\begin{array}{ll}\frac{A}{x}, & 1<x<e^{3} \\ 0, & \text { elsewhere }\end{array}\right.$ is a probability density function of a continuous random variable X, find $P(x>e)$.

PART - III

i. Answer any SEVEN Questions.
ii. Question number 40 is compulsory.
31. Find the area of the region bounded by $2 x-y+1=0, y=-1, y=3$ and $y-$ axis.
32. Solve: $\frac{d y}{d x}+2 y \cot x=3 x^{2} \operatorname{cosec}^{2} x$.
33. Evaluate : $\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{4} x d x$
34. Solve the differential equation: $\frac{d y}{d x}=e^{x+y}+x^{3} e^{y}$
35. Evaluate $\int_{0}^{1} \frac{\sin \left(3 \tan ^{-1} \mathrm{x}\right) \tan ^{-1} \mathrm{x}}{1+\mathrm{x}^{2}} \mathrm{dx}$
36. Find the particular solution of $\left(1+x^{3}\right) d y-x^{2} y d x=0$ satisfying the condition $y(1)=2$.
37. If X is the random variable with distribution function $F(x)$ given by,

38. Find the volume of the solid that results when the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b>0)$ is revolved about the minor axis.
39. Verify that the function $y=e^{-3 x}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$.
40. Find the value of $\tan ^{-1}(-1)+\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$

PART - IV

Answer All the Questions:

41. a) Solve: $\left(1+2 e^{x / y}\right) d x+2 e^{x / y}\left(1-\frac{x}{y}\right) d y=0$
(or)
b) Find the area of the region bounded between the parabola $x^{2}=y$ and the curve $y=|x|$.
42. a) The cumulative distribution function of a discrete random variable is given by.

$$
F(x)= \begin{cases}0 & \text { for }-\infty<x<0 \\ \frac{1}{2} & \text { for } 0 \leq x<1 \\ \frac{3}{5} & \text { for } 1 \leq x<2 \\ \frac{4}{5} & \text { for } 2 \leq x<3 \\ \frac{9}{10} & \text { for } 3 \leq x<4 \\ 1 & \text { for } 4 \leq x<\infty\end{cases}
$$

Find (i) the probability mass function (ii) $\mathrm{P}(\mathrm{X}<3)$ and (iii) $\mathrm{P}(\mathrm{X} \geq 2)$.
b) Evaluate: $\int_{0}^{\pi / 2} \frac{d x}{4+9 \cos ^{2} x}$
43. a) Find the area of the region bounded by the curve $2+x-x^{2}+y=0, x-\operatorname{axis}, x=-3$ and $x=3$.
(or)
b) Solve the differential equation $x \frac{d y}{d x}=y-x \cos ^{2}\left(\frac{y}{x}\right)$
44. a) Evaluate: $\int_{0}^{2}\left(x^{2}+x+2\right) d x$

(or)

b) Solve $\frac{d y}{d x}+\frac{y}{x}=\sin x$
45. a) Evaluate: $\int_{-\pi}^{\pi} \frac{\cos ^{2} x}{1+a^{x}} d x$

(or)

b) Evaluate: $\int_{\pi / 6}^{\pi / 3} \frac{d x}{1+\sqrt{\cot x}}$
46. a) Find the value of $\sec ^{2}\left(\cot ^{-1} 3\right)+\operatorname{cosec}^{2}\left(\tan ^{-1} 2\right)$
(or)
b)A six sided die is marked ' 1 'on the face ' 3 ' on two of its faces, and ' 5 ' on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find
(i) the probability mass function
(ii) the cumulative distribution function
(iii) $\mathrm{P}(4 \leq \mathrm{X}<10)$
(iv) $\mathrm{P}(\mathrm{X} \geq 6)$
47. a) Evaluate as the limits of $\operatorname{sum} \int_{1}^{3}\left(2 x^{2}+5\right) d x$
(or)
b) Solve $x \frac{d y}{d x}+2 y-x^{2} \log x=0$

