Time: 3 Hrs / Total Marks: 100

12th STD: Revision Test - 3

MATHS

		PART - I					
i.	All question are compuls	sory.		$[20 \times 1 = 20]$			
ii.	Choose the most appropriate answer the given four alternatives and write the option code and the						
	corresponding answer.						
1.	If $\sin^{-1} x = 2 \sin^{-1} \alpha$ has a solution, then						
	a. $ \alpha \le \frac{1}{\sqrt{2}}$	b. $ \alpha \ge \frac{1}{\sqrt{2}}$	c. $ \alpha < \frac{1}{\sqrt{2}}$	d. $ \alpha > \frac{1}{\sqrt{2}}$			
2.	The value of $\cos^{-1}(-1) + \tan^{-1}(\infty) + \sin^{-1} 1 = $						
	aπ	b. $\frac{3\pi}{2}$	c. 30°	d. 2π			
3.	. The area between $y^2 = 4x$ and its latus rectum is						
	a. $\frac{2}{3}$	b. $\frac{4}{3}$	c. $\frac{8}{3}$	d. $\frac{5}{3}$			
4. $\int_0^{2a} f(x) dx = 2 \int_0^a f(x) dx$ if							
	a. f(2a-x)=f(x)		c. f(x) = -f(x)	d. f(-x) = f(x)			
5.	The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$ is						
	a. $xy = k$	$b. y = k \log x$	c. y = kx	$d. \log y = kx$			
6.	P is the amount of certain	stance is proportional to					
	the amount remaining, then						
	a. $P = ce^{kt}$	b. $P = ce^{-kt}$	c. $P = ckt$	d. Pt = c			
7.	If $P\{X = 0\} = 1 - P\{X = 1\}$. If $E[X] = 3 \text{ Var } (X)$, then $P\{X = 0\}$.						
	a. $\frac{2}{3}$	b. $\frac{2}{5}$	c. $\frac{1}{5}$	d. $\frac{1}{3}$			
8.	8. If the function $f(x) = \frac{1}{12}$ for $a < x < b$, represents a probability density function of a continuous random var						
	then which of the following						
	a. 0 and 12	b. 5 and 17	c. 7 and 19	d. 16 and 24			
9.	The equation $tan^{-1} x - cot$						
	a. no solution		b. unique solution				
	c. two solutions		d. infinite number of solution				
10.	$\sin^{-1}\left(3\frac{x}{2}\right) + \cos^{-1}\left(3\frac{x}{2}\right) =$	·					
	a. $\frac{3\pi}{2}$	b. 6x	c. 3x	d. $\frac{\pi}{2}$			
11.	The value of $\int_0^1 (\sin^{-1} x)^2 dx$ is						
	a. $\frac{\pi^2}{4} - 1$	b. $\frac{\pi^2}{4} + 2$	$c.\frac{\pi^2}{4}+1$	d. $\frac{\pi^2}{4} - 2$			
12.	The integrating factor of the	he differential equation $\frac{dy}{dx} + p(x)$	y = Q(x) is x, then P(x) =				

13.	The number of arbitrary co	onstants in the general solution	is of order n and $n + 1$ are respec	tively			
	a. $n-1$, n	b. n, n + 1	c. $n + 1$, $n + 2$	d. $n + 1$, n			
14.	4. If cot ⁻¹ 2 and cot ⁻¹ 3 are two angles of a triangle, then the third angle is						
	a. $\frac{\pi}{4}$	b. $\frac{3\pi}{4}$	$c.\frac{\pi}{6}$	$d.\frac{\pi}{3}$			
15.	$\sec^{-1}\left(\frac{2}{3}\right) + \cos\sec^{-1}\left(\frac{2}{3}\right) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	·					
	a. $\frac{-\pi}{2}$	b. $\frac{\pi}{2}$	c. π	d. – π			
16.	The value of $\int_{-1}^{2} x dx$ is _	·					
	a. $\frac{1}{2}$	b. $\frac{3}{2}$	c. $\frac{5}{2}$	d. $\frac{7}{2}$			
17.	$\int_0^{2a} f(x) dx = 0 \text{ if } \underline{\hspace{1cm}}$						
	a. f(2a-x)=f(x)	b. $f(2a - x) = -f(x)$	c. f(x) = -f(x)	d. f(-x) = f(x)			
18.	The population P in any year t is such that the rate of increase in the population is proportional to the population.						
	Then						
	a. $P = ce^k t$	b. $P = ce^{-kt}$	$c. P = c^{kt}$	d. P = c			
19.	. On a multiple – choice exam with 3 possible destructives for each of the 5 equations, the probability that a student						
	will get or more correct an	swers just by guessing is	·				
	a. $\frac{11}{243}$	b. $\frac{3}{8}$	c. $\frac{1}{243}$	d. $\frac{5}{243}$			
20. Consider a game where the player tosses a six – sided fair die. If the face that comes up is 6, the player w							
	otherwise he loses \mathbb{Z}^2 , where k is the face that comes up $k = \{1, 2, 3, 4, 5\}$. The expected amount to win at this gan						
	in ₹ is						
	a. $\frac{19}{6}$	b. $-\frac{19}{6}$	c. $\frac{3}{2}$	d. $-\frac{3}{2}$			
:	Angwon out SEVEN Quo	PART – II		$[7 \times 2 - 14]$			
i. ii.	Answer ant SEVEN Questions. [7 x 2 = 14] Ougstion Number 30 is compulsory						
	Evaluate $\int_0^3 (3x^2 - 4x + 5) dx$ Solve $(1 + x^2) \frac{dy}{dx} = 1 + y^2$						
	A condition random variable x has the p.d.f defined by $f(x) = \begin{cases} Ce^{-ax}, & 0 < x < \infty \\ 0, & \text{elsewhere} \end{cases}$ the value of C if $a > 0$.						
	Find the value of $\sin -1 \left(\sin \left(\frac{5\pi}{4} \right) \right)$						
25.	5. Evaluate: $\int_0^{\pi/4} \frac{\sin^3 x}{\cos^5 x} dx$						
	. Show that the following expressions is a solution of the corresponding given differential equation. $y = 2x^2$; $xy' = 2y$						
27.	For the distribution function given by $F(x) = \begin{cases} 0 & x < 0 \\ x^2 & 0 \le x \le 1, \text{ find the density function.} \\ 1 & x > 1 \end{cases}$						
	Also evaluate $P(0.5 < X < 0.75)$.						
28.	Evaluate: $\int_{-\pi/4}^{\pi/4} x^3 \sin^2 x$	dx					

29. Find the constant C such that the function $f(x) = \begin{cases} Cx^2 & 1 < x < 4 \\ 0 & \text{Otherwise} \end{cases}$ is a density function.

30. If $f(x) = \begin{cases} \frac{A}{x}, & 1 < x < e^3 \\ 0, & \text{elsewhere} \end{cases}$ is a probability density function of a continuous random variable X, find P(x > e).

PART - III

i. Answer any SEVEN Questions.

 $[7 \times 3 = 21]$

ii. Question number 40 is compulsory.

31. Find the area of the region bounded by 2x - y + 1 = 0, y = -1, y = 3 and y - axis.

32. Solve:
$$\frac{dy}{dx} + 2y \cot x = 3x^2 \csc^2 x$$
.

33. Evaluate :
$$\int_0^{\frac{\pi}{2}} \sin^2 x \cos^4 x dx$$

34. Solve the differential equation :
$$\frac{dy}{dx} = e^{x+y} + x^3 e^y$$

35. Evaluate
$$\int_0^1 \frac{\sin(3 \tan^{-1} x) \tan^{-1} x}{1+x^2} dx$$

36. Find the particular solution of
$$(1 + x^3) dy - x^2 y dx = 0$$
 satisfying the condition $y(1) = 2$.

37. If X is the random variable with distribution function F(x) given by,

$$F(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x < 1 \text{ then find (i) the Probability density function } f(x) \\ 1, & 1 \le x \end{cases}$$

38. Find the volume of the solid that results when the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) is revolved about the minor axis.

39. Verify that the function $y = e^{-3x}$ is a solution of the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$.

40. Find the value of $\tan^{-1}(-1) + \cos^{-1}(\frac{1}{2}) + \sin^{-1}(-\frac{1}{2})$

PART - IV

Answer All the Questions:

 $[7 \times 5 = 35]$

41. a) Solve:
$$(1 + 2e^{x/y})dx + 2e^{x/y}\left(1 - \frac{x}{y}\right)dy = 0$$
(or)

b) Find the area of the region bounded between the parabola $x^2 = y$ and the curve y = |x|.

42. a) The cumulative distribution function of a discrete random variable is given by.

$$F(x) = \begin{cases} 0 & \text{for } -\infty < x < 0 \\ \frac{1}{2} & \text{for } 0 \le x < 1 \\ \frac{3}{5} & \text{for } 1 \le x < 2 \\ \frac{4}{5} & \text{for } 2 \le x < 3 \\ \frac{9}{10} & \text{for } 3 \le x < 4 \\ 1 & \text{for } 4 \le x < \infty \end{cases}$$

Find (i) the probability mass function (ii) $P(X \le 3)$ and (iii) $P(X \ge 2)$.

(or)

- b) Evaluate: $\int_0^{\pi/2} \frac{dx}{4+9 \cos^2 x}$
- 43. a) Find the area of the region bounded by the curve $2 + x x^2 + y = 0$, x axis, x = -3 and x = 3.

(or)

- b) Solve the differential equation $x \frac{dy}{dx} = y x \cos^2 \left(\frac{y}{x}\right)$
- 44. a) Evaluate: $\int_0^2 (x^2 + x + 2) dx$

(or)

- b) Solve $\frac{dy}{dx} + \frac{y}{x} = \sin x$
- 45. a) Evaluate: $\int_{-\pi}^{\pi} \frac{\cos^2 x}{1+a^x} dx$

(or)

- b) Evaluate: $\int_{\pi/6}^{\pi/3} \frac{dx}{1+\sqrt{\cot x}}$
- 46. a) Find the value of $\sec^2(\cot^{-1} 3) + \csc^2(\tan^{-1} 2)$

(or)

- b)A six sided die is marked '1' on the face '3' on two of its faces, and '5' on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find
- (i) the probability mass function

(ii) the cumulative distribution function

(iii) $P(4 \le X < 10)$

- (iv) P($X \ge 6$)
- 47. a) Evaluate as the limits of sum $\int_{1}^{3} (2x^2 + 5) dx$

(or)

b) Solve $x \frac{dy}{dx} + 2y - x^2 \log x = 0$

------ALL THE BEST------