ST. JOSEPH STUDY CENTRE

11 ^{tl}	^h STD: Quarterly Exam	PHYSICS	<u>}</u>	Time: 2 Hrs / Total Marks: 70
I.	Choose The Correct Answ	wer:		[15 x 1 = 15]
1.	The velocity of a particle v	at an instant t is given by v =	= at + bt ² . The dimensions of t	o is
	(a) [L]	(b) [LT ⁻¹]	(c) [LT ⁻²]	(d) [LT ⁻³]
2.	If the length and time period of an oscillating pendulum have errors of 1% and 3% respectively then the error in			
	measurement of acceleration	on due to gravity is		
	(a) 4%	(b) 5%	(c) 6%	(d) 7%
3.	The dimension of $(\mu_o \epsilon_o)^{-1}$	2		
	(a) length	(b) time	(c) velocity	(d) force
4.	Identify the unit vector in the following.			
	(a) $\hat{\iota} + \hat{j}$	$(b) \frac{\hat{l}}{\sqrt{2}}$	(c) $\hat{k} - \frac{\hat{j}}{\sqrt{2}}$	(d) $\frac{i+j}{\sqrt{2}}$
5.	If an object is thrown vertically up with the initial speed u from the ground, then the time taken by the object to return			
	back to ground is			
	(a) $\frac{u^2}{u^2}$	(b) $\frac{u^2}{u^2}$	(c) $\frac{u}{d}$	(d) $\frac{2u}{2u}$
~	(a) 2g		$(2)_{2g}$	
6.	Two objects are projected at angles 30° and 60° respectively with respect to the horizontal direction. The range of two objects are denoted as \mathbf{P}_{i} , θ_{i} and \mathbf{P}_{i} . Choose the correct relation from the following			
	two objects are denoted as	\mathbf{K}_{30}° and \mathbf{K}_{60}° . Choose the col	rrect relation from the following R_{co0}	ng
	(a) $R_{30}^{\circ} = R_{60}^{\circ}$	(b) $R_{30}^{0} = 4 R_{60}^{0}$	(c) $R_{30}^{\circ} = \frac{-60^{\circ}}{2}$	$(d)R_{30}^{\circ} = 2 R_{60}^{\circ}$
7.	When a car takes a sudden	left turn in the curved road, p	bassengers are pushed towards	s the right due to
	(a) inertia of direction	(b) inertia of motion	(c) inertia of rest	(d) absence of inertia
8.	Two masses m_1 and m_2 are	experiencing the same force	where $m_1 < m_2$. The ratio of t	heir acceleration
~	(a) 1	(b) less than 1	(c) greater than 1	(d) all the three cases
9.	An object of mass m begins to move on the plane inclined at an angle θ . The coefficient of static friction of inclined surface is μ . The maximum static friction experienced by the mass is			
	surface is μ_s . The maximum	(b) u ma	by the mass is $(a) = ma sin \theta$	(d) u mg $\cos \theta$
10	(a) mg A uniform force of (2) L	(b) $\mu_s \lim_{s \to a} n_s n_s$	(c) $\mu_s \text{mg smo}$	(d) $\mu_s \lim_{x \to 0} \cos \theta$
10.	A uniform force of $(2l + j)$ is acts on a particle of mass 1 kg. The particle displaces from position $(3j + k)$ in to (5l + 3l) m. The work done by the force on the particle is			
	(3i + 3j) III. The work doi	(b) 6 I	(c) 10 I	(d) 12 I
11	(a) > b The potential energy of a s	vstem increases if work is do	(c) 10 J	(d) 12 J
11.	(a) by the system against a	conservative force	(b) by the system agains	t a non-conservative force
	(c) upon the system by a conservative force (d) upon the system by a non			a non-conservative force
12.	Two equal masses m_1 and m_2 are moving along the same straight line with velocities $5ms^{-1}$ and $-9ms^{-1}$ respectively. If			
	the collision is elastic, then calculate the velocities after the collision of m_1 and m_2 , respectively			
	(a) -4ms ⁻¹ and 10 ms ⁻¹	(b) $10ms^{-1}$ and $0 ms^{-1}$	(c) $-9ms^{-1}$ and 5 ms ⁻¹	(d) 5 ms ⁻¹ and 1 ms ⁻¹
13.	A couple produces,			
	(a) pure rotation	(b) pure translation	(c) rotation and translation	on (d) no motion
14.	A rigid body rotates with a	n angular momentum L. If its	s kinetic energy is halved, the	angular momentum becomes,
	(a) L	(b) L/2	(c) 2L	(d) L/ $\sqrt{2}$
15.	When a mass is rotating in a plane about a fixed point, its angular momentum is directed along,			
	(a) a line perpendicular to the plane of rotation			
	(b) the line making an angl	e of 45° to the plane of rotati	on	
	(c) the radius		(d) tangent to the path	
II.	Answer any 6 of the following questions: $[6 \ge 2 = 12]$			
	Question number 20 is compulsory			
16	What are the limitations of	dimensional analysis?		
10.	White a chart not and the	alar product hotau a terr	atom	
1/.	write a short note on the scalar product between two vectors.			

18. What is the difference between velocity and average velocity?

- 19. State Newton's second law.
- 20. Using free body diagram, show that it is easy to pull an object than to push it.
- 21. Define work. Write its unit.
- 22. Define centre of mass.
- 23. Define couple.
- 24. Define centre of gravity.

III. Answer any 6 of the following questions: Question number 29 is compulsory

- 25. Write the rules for determining significant figures.
- 26. Define precision and accuracy. Explain with one example.
- 27. Write down the kinematic equations for angular motion.
- 28. Explain various types of friction. Suggest a few methods to reduce friction.
- 29. State the empirical laws of static and kinetic friction.
- 30. Write the various types of potential energy. Explain the formulae.
- 31. Define the following
 - a) Coefficient of restitution
 - b) Power
 - c) Law of conservation of energy
 - d) loss of kinetic energy in inelastic collision.
- 32. What is the relation between torque and angular momentum?
- 33. Mention any two physical significance of moment of inertia.

IV. Answer the following questions:

- 34. a) Explain in detail the various types of errors.
 - [OR] b) Assuming that the frequency γ of a vibrating string may depend upon i) applied force (F)

iii) mass per unit length (m), prove that $\gamma \alpha \frac{1}{l} \sqrt{\frac{F}{m}}$ using dimensional analysis.

- 35. a) Derive the kinematic equations of motion for constant acceleration.
 - [OR]
 - b) Derive the expression for centripetal acceleration.
- 36. a) Briefly explain the origin of friction. Show that in an inclined plane, angle of friction is equal to angle of repose. [OR]
 - b) Explain the need for banking of tracks.
- 37. a) State and explain work energy principle. Mention any three examples for it.

[OR]

- b) Arrive at an expression for elastic collision in one dimension.
- 38. a) Explain why a cyclist bends while negotiating a curve road? Arrive at the expression for angle of bending for a given velocity.

[OR]

b) Explain in detail in triangular law of addition.

-----ALL THE BEST-----

 $[6 \times 3 = 18]$

[5 x 5 = 25]

ii) length (1)