

| 12 <sup>t</sup>                                                                                                                  | <sup>h</sup> STD: Mid Term Test - 2                                                                                                          | Ī                                        | PHYSICS                                            | Time: 1 Hr 30 mins / Total Marks: 50    |  |                           |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------|-----------------------------------------|--|---------------------------|
|                                                                                                                                  |                                                                                                                                              |                                          |                                                    |                                         |  |                           |
| I.                                                                                                                               | Choose the correct answer $[15 \times 1 = 1]$                                                                                                |                                          |                                                    |                                         |  |                           |
| 1.                                                                                                                               |                                                                                                                                              |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | screen, the screen-to-slit distance D must be changed to,                                                                                    |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | (a) 2D                                                                                                                                       | (b) $\frac{D}{2}$                        | (c) $\sqrt{2}$ D                                   | (d) $\frac{D}{\sqrt{2}}$                |  |                           |
| 2.                                                                                                                               | Two coherent monochromatic light beams of intensities I and 4I are superposed. The maximum and minimum                                       |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | possible intensities in the resulting beam are                                                                                               |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | (a) 5I and I                                                                                                                                 | (b) 5I and 3I                            | (c) 9I and I                                       | (d) 9I and 3I<br>Glass slide Screen     |  |                           |
| 3. One of the of Young's double slits is covered with a glass plate as shown in figure.<br>The position of central maximum will, |                                                                                                                                              |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  |                                                                                                                                              |                                          |                                                    |                                         |  | (a) get shifted downwards |
|                                                                                                                                  | (c) will remain the same                                                                                                                     |                                          | (d) data insufficient to co                        | onclude                                 |  |                           |
| 4.                                                                                                                               | The telescopes which have                                                                                                                    | mirror objectives area                   | a called telescopes.                               |                                         |  |                           |
|                                                                                                                                  | (a) Reflecting                                                                                                                               | (b) Refracting                           | (c) Astronomical                                   | (d) Terrestrial                         |  |                           |
| 5.                                                                                                                               | The lens used to correct hypermetropia is lens.                                                                                              |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | (a) Concave                                                                                                                                  | (b) Convex                               | (c) Bifocal                                        | (d) Cylindrical                         |  |                           |
| 6.                                                                                                                               | A ray of light strikes a glass                                                                                                               | s plate at an angle 60°                  | . If the reflected and refracte                    | d rays are perpendicular to each other, |  |                           |
|                                                                                                                                  | the refractive index of the glass is,                                                                                                        |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | (a) $\sqrt{3}$                                                                                                                               | (b) $\frac{3}{2}$                        | (c) $\sqrt{\frac{3}{2}}$                           | (d) 2                                   |  |                           |
| 7.                                                                                                                               | The magnification of near point focusing of simple microscope is                                                                             |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | (a) m = 1 + $\frac{D}{f}$                                                                                                                    | (b) m = $\frac{D}{f}$                    | (c) m = 1                                          | (d) $m = 0$                             |  |                           |
| 8.                                                                                                                               | The transverse nature of light is shown in,                                                                                                  |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | (a) Interference                                                                                                                             | (b) diffraction                          | (c) scattering                                     | (d) polarisation                        |  |                           |
| 9.                                                                                                                               | . The wavelength $\lambda_e$ of an electron and $\lambda_p$ of a photon of same energy E are related by                                      |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | (a) $\lambda_P \propto \lambda_e$                                                                                                            | (b) $\lambda_P \propto \sqrt{\lambda_e}$ | (c) $\lambda_P \propto \frac{1}{\sqrt{\lambda_e}}$ | (d) $\lambda_P \propto \lambda_e^2$     |  |                           |
| 10.                                                                                                                              | 10. In photoelectric emission, a radiation whose frequency is 4 times threshold frequency of a certain metal is incident on                  |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | the metal. Then the maximum possible velocity of the emitted electron will be                                                                |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | (a) $\sqrt{\frac{hv_0}{m}}$                                                                                                                  | (b) $\sqrt{\frac{6hv_0}{m}}$             | (c) $2\sqrt{\frac{hv_0}{m}}$                       | (d) $\sqrt{\frac{hv_0}{2m}}$            |  |                           |
| 11.                                                                                                                              | 11. When a metallic surface is illuminated with radiation of wavelength $\lambda$ , the stopping potential is V. If the same surface         |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | is illuminated with radiation of wavelength $2\lambda$ , the stopping potential is $\frac{V}{4}$ . The threshold wavelength for the metallic |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | surface is                                                                                                                                   |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | (a) 4λ                                                                                                                                       | (b) 5 λ                                  | (c) $\frac{5}{2}\lambda$                           | (d) 3 λ                                 |  |                           |
| 12.                                                                                                                              | 12. The threshold wavelength for a metal surface whose photoelectric work function is 3.313 eV is                                            |                                          |                                                    |                                         |  |                           |
|                                                                                                                                  | (a) 4125Å                                                                                                                                    | (b) 3750Å                                | (c) 6000Å                                          | (d) 20625.Å                             |  |                           |

|                                                                                                              | 13. A light of wavelength 500 nm is incident on a sensitive metal plate of photoelectric work function 1.235 eV. The                                                                |                        |                     |  |  |  |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|--|--|--|
|                                                                                                              | oto electrons emitted is (7                                                                                                                                                         |                        |                     |  |  |  |
| (a) 0.58 eV                                                                                                  | (b) 2.48 eV                                                                                                                                                                         | (c) 1.24 eV            | (d) 1.16 eV         |  |  |  |
|                                                                                                              | 4. The work functions for metals A, B and C are 1.92 eV, 2.0 eV and 5.0 eV respectively. The metal/metals which will emit photoelectrons for a radiation of wavelength 4100Å is/are |                        |                     |  |  |  |
| (a) A only                                                                                                   | (b) both A and B                                                                                                                                                                    | (c) all these metals   | (d) none            |  |  |  |
| •                                                                                                            |                                                                                                                                                                                     | nergy is calledemissio |                     |  |  |  |
| (a) Photoelectric                                                                                            | (b) field                                                                                                                                                                           | (c) thermionic         | (d) secondary       |  |  |  |
|                                                                                                              |                                                                                                                                                                                     |                        |                     |  |  |  |
| II. Answer any 5 of the following questions: $[5 \times 2 = 10]$                                             |                                                                                                                                                                                     |                        |                     |  |  |  |
| 16. Define wave front.                                                                                       |                                                                                                                                                                                     |                        |                     |  |  |  |
| 17. What are coherent sources?                                                                               |                                                                                                                                                                                     |                        |                     |  |  |  |
| 18. What is resolution?                                                                                      |                                                                                                                                                                                     |                        |                     |  |  |  |
| 19. State Brewster's law.                                                                                    |                                                                                                                                                                                     |                        |                     |  |  |  |
| 20. What is photoelectric effect?                                                                            |                                                                                                                                                                                     |                        |                     |  |  |  |
| 21. How will you define threshold frequency?                                                                 |                                                                                                                                                                                     |                        |                     |  |  |  |
| 22. State de Broglie hypothesis.                                                                             |                                                                                                                                                                                     |                        |                     |  |  |  |
|                                                                                                              |                                                                                                                                                                                     |                        |                     |  |  |  |
| III. Answer any 5 of the following questions: $[5 \times 3 = 15]$                                            |                                                                                                                                                                                     |                        |                     |  |  |  |
| 23. What is astigmatism? What is its remedy?                                                                 |                                                                                                                                                                                     |                        |                     |  |  |  |
| 24. What are the salient features of corpuscular theory of light?                                            |                                                                                                                                                                                     |                        |                     |  |  |  |
| 25. List the uses of polaroids.                                                                              |                                                                                                                                                                                     |                        |                     |  |  |  |
| 26. Give the definition of intensity of light according to quantum concept and its unit.                     |                                                                                                                                                                                     |                        |                     |  |  |  |
| 27. What is a photo cell? Mention the different types of photocells.                                         |                                                                                                                                                                                     |                        |                     |  |  |  |
| 28. Define stopping potential.                                                                               |                                                                                                                                                                                     |                        |                     |  |  |  |
| 29. A proton and an electron have same kinetic energy. Which one has greater de Broglie wavelength. Justify. |                                                                                                                                                                                     |                        |                     |  |  |  |
|                                                                                                              |                                                                                                                                                                                     |                        |                     |  |  |  |
| IV. Answer the following                                                                                     | questions:                                                                                                                                                                          |                        | $[2 \times 5 = 10]$ |  |  |  |
| 30. a. Obtain the equation for bandwidth in Young's double slit experiment.                                  |                                                                                                                                                                                     |                        |                     |  |  |  |
|                                                                                                              | [OR]                                                                                                                                                                                |                        |                     |  |  |  |
| b. Discuss about the simple microscope and obtain the equations for magnification for near point focusing    |                                                                                                                                                                                     |                        |                     |  |  |  |
| and normal focusi                                                                                            | ng.                                                                                                                                                                                 |                        |                     |  |  |  |
|                                                                                                              |                                                                                                                                                                                     |                        |                     |  |  |  |
| 31. a. Describe briefly Davisson – Germer experiment which demonstrated the wave nature of electrons.        |                                                                                                                                                                                     |                        |                     |  |  |  |

## [OR]

b. List out the laws of photoelectric effect.

-----ALL THE BEST-----