maths ONLINE TEST 0% 10th Maths One Mark Questions – (FULL) Based on Reduced Syllabus – St. Joseph Study Centre Wish you all the Best ! 1 / 85 The total surface are of a hemi – sphere is how much times the square of its radius? 3π π 2π 4π 2 / 85 The total surface area of a cylinder whose radius is 1/3 of its height is? 9 π h² / 8 sq. units 56 π h² / 9 sq. units 8 π h² / 9 sq. units 24πh² sq. units 3 / 85 The volume ( in cm³) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 cm and height 5 cm is? 5 π (4 / 3) π (10 / 3) π (20 / 3) π 4 / 85 The electric pole subtends an angle of 30˚ at a point on the same level as its foot. At a second point ‘b’ metres above the first, the depression of the foot of the tower is 60˚. The height of the tower (in ,metres) is equal to? b / 2 √3 b b / 3 b /√3 5 / 85 In a triangle ABC, AD is the the bisector of Angle BAC, if AB= 8cm, BD = 6cm and DC = 3cm. The length of the side AC is 8cm 3cm 4cm 6cm 6 / 85 Find q and r for the following pairs of integers a and b satisfying a =bq +r, a = 13, b = 3? 4, 2 2, 4 1, 4 4, 1 7 / 85 The height of a right circular cone whose radius is 5 cm and slant height is 13 cm will be ? 10 cm 13cm 12 cm 5 cm 8 / 85 Two poles of heights 6m and 11m stands vertically on a plane ground. If the distance between their feet is 12m, what is the distance between their tops? 15m 12.8m 14m 13m 9 / 85 (2, 1) is the point of intersection of two lines.? 3x +y = 3; x +y = 7 x +y = 3; 3x +y = 7 x + 3y −3 = 0; x −y −7 = 0 x −y −3 = 0; 3x −y −7 = 0 10 / 85 Complete the quadratic equation x² + 14x + ____? 14 49 -49 7 11 / 85 Find q and r for the following pairs of integers a and b satisfying a =bq +r, a = 18, b = 4? 4, 3 4, 2 3 ,4 0, 4 12 / 85 A man walks near a wall, such that the distance between him and the wall is 10 units. Consider the wall to be the Y axis. The path travelled by the man is? y = 10 y = 0 x = 10 x = 0 13 / 85 If Δ = 0? Real and Unequal roots No Real root None of these Real and Equal roots 14 / 85 The HCF of numbers of the form 2 ͫ and 3 ᶯ is ____? 1 3 2 15 / 85 If the ratio of the height of a tower and the length of its shadow is √3: 1, then the angle of elevation of the sun has measure? 90˚ 45˚ 30˚ 60˚ 16 / 85 The slope of the line joining (12, 3) , (4,a) is 1/8. The value of ‘a’ is? 2 1 -5 4 17 / 85 Which of the following is incorrect? P(A)+P(Ā) = 1 P(Ø) = 0 P(A)> 1 0 ≤ P(A) ≤ 1 18 / 85 Let n(A) = m and n(B) = n then the total number of non-empty relations that can be defined from A to B is? mᶰ 2ᵐᶰ nᵐ 2ᵐᶰ – 1 19 / 85 The point of intersection of 3x −y = 4 and x +y = 8 is? (2, 4) (5, 3) (4, 4) (3, 5) 20 / 85 A tower is 60 m height. Its shadow is x metres shorter when the sun’s altitude is 45˚ than when it has been 30˚, then x is equal to? 43.92 m 45.6 m 41.92 m 43 m 21 / 85 If Δ > 0? Real and Unequal roots Real and Equal roots None of these No Real root 22 / 85 Euclid’s division algorithm is a repeated application of division lemma until we get remainder as ____? 3 4 1 23 / 85 The area of triangle formed by the points (−5,0) , (0,−5) and (5,0) is? 25 sq.units none of these 0 sq.units 5 sq.units 24 / 85 If two solid hemispheres of same base radius r units are joined together along their bases, then curved surface area of this new solid is? 3πr² sq. units 4πr² sq. units 8πr² sq. units 6πr² sq. units 25 / 85 Using Euclid’s division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are? 1, 4, 8 0, 1, 3 1, 3, 5 0, 1, 8 26 / 85 Fill in the blanks for the following sequences 7, 13, 19, _____ , …? 25 11 35 15 27 / 85 Kamalam went to play a lucky draw contest. 135 tickets of the lucky draw were sold. If the probability of Kamalam winning is 1 / 9, then the number of tickets bought by Kamalam is? 10 5 20 15 28 / 85 If A = {1,2}, B = {1,2, 3, 4},C = {5,6} and D = {5, 6, 7, 8} then state which of the following statement is true? (A×B) ⊂ (A×D) (B×D) ⊂ (A×C) (D×A) ⊂ (B×A) (A×C)⊂ (B×D) 29 / 85 If n(A×B) = 6 and A = {1, 3} then n(B) is? 2 1 3 6 30 / 85 The number of divisors of any prime number is _____? 4 1 3 2 31 / 85 Euclid’s division lemma states that for positive integers a and b, there exist unique integers q and r such that a = bq +r , where r must satisfy? 0 < r < b 0 < r ≤ b 0 ≤ r < b 1 < r < b 32 / 85 The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is? 2025 2520 5220 5025 33 / 85 A shuttle cock used for playing badminton has the shape of the combination of? A hemisphere and a cone A cylinder and a sphere Frustum of a cone and a hemisphere A sphere and a cone 34 / 85 The angle of elevation of a cloud from a point h metres above a lake is β. The angle of depression of its reflection in the lake is 45˚. The height of location of the could from the lake is? h tan (45˚ – β) none of these h(1- tan β) / 1 + tan β h(1+ tan β) / 1 – tan β 35 / 85 If the ordered pairs (a +2, 4) and (5,2a +b)are equal then (a,b) is? (3, –2) (2,3) (5,1) (2, –2) 36 / 85 Is 1 a prime number? No Yes 37 / 85 If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is? 1 : 8 1 : 4 1 : 2 1 : 6 38 / 85 If the roots of the equation q²x² + p²x +r² = 0 are the squares of the roots of the equation qx² + px +r = 0 , then q, p, r are in _______? none of these G.P A.P Both A.P and G.P 39 / 85 The remainder when 7 x 13x 19x 23x 29 x31 is divided by 6 is ________? 1 7 2 9 40 / 85 P(A ∪ B) + P(A ∩ B) is ________? P(A) + P(B) P(A) – P(B) 41 / 85 If A and B are mutually exclusive events then P(A∩ B) = _______. Zero 5 4 3 42 / 85 The ratio of the volumes of a cylinder, a cone and a sphere , if each has the same diameter and same height is? 1:3:2 2:1:3 3:1:2 1:2:3 43 / 85 Which of the following should be added to make x⁴ + 64 a perfect square? 4x² -8x² 8x² 16x² 44 / 85 A = {a,b, p}, B = {2, 3}, C = {p,q,r,s} then n[(A U C)×B] is? 16 20 12 8 45 / 85 The height and radius of the cone of which the frustum is a part are h₁ units and r₁ units respectively. Height of the frustum is h₂ units and radius of the smaller base is r₂ units. If h₂ : h₁ = 1 : 2 the r₂ : r₁ is? 1 : 2 2 : 1 3 : 1 1 : 3 46 / 85 A system of three linear equations in three variables is inconsistent if their planes? intersect in a line do not intersect intersect only at a point coincides with each other 47 / 85 A spherical ball of radius r₁ units is melted to make 8 new identical balls each of radius r₂ units. The r₁ : r₂ is? 1 : 4 1 : 2 4 : 1 2 : 1 48 / 85 If A is a point on the Y axis whose ordinate is 8 and B is a point on the X axis whose abscissae is 5 then the equation of the line AB is? x = 8 y = 5 8x −5y = 40 8x + 5y = 40 49 / 85 If (5,7), (3,p) and (6,6) are collinear, then the value of p is? 9 3 12 9 50 / 85 The nth term of the sequence 0,2,6,12,20,… can be expressed as _____? n n² – n n – n n² 51 / 85 If there are 1024 relations from a set A = {1, 2, 3, 4, 5} to a set B, then the number of elements in B is? 2 3 4 8 52 / 85 A tangent is perpendicular to the radius at the point of contact infinity chord centre 53 / 85 The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30˚ and 60˚ respectively. The height of the multistoried building and the distance between two building (in metres) is? 30, 10 √3 20, 10 √3 30, 5 √3 20, 10 54 / 85 The range of the relation R = {(x,x²) | x is a prime number less than 13} is? {2,3,5,7,11} {4,9,25,49,121} {2,3,5,7} {1,4,9,25,49,121} 55 / 85 When a positive integer is divided by 3, What are the possible remainders? 0, 1, 2 1, 0, 2 2, 1, 0 56 / 85 Graph of a linear equation is a _______? circle straight line parabola hyperbola 57 / 85 The slope of the line which is perpendicular to a line joining the points (0,0) and (–8,8) is? 1 -8 1/3 -1 58 / 85 Two positive integers are said to be relatively prime or co prime if their Highest Common Factor is? 0:00 7 8 1 59 / 85 The solution of the system x +y −3z = −6 , −7y + 7z = 7 , 3z = 9 is? x = 1, y = −2, z = 3 x = −1, y = 2, z = 3 x = 1, y = 2, z = 3 x = −1, y = −2, z = 3 60 / 85 The solution of (2x – 1)² = 9 is equal to? -1 2 None of these -1, 2 61 / 85 If (x -6) is the HCF of x² -2x -24 and x² -kx -6 then the value of k is? 3 8 6 5 62 / 85 Is x² + 4x + 4 a perfect square? no yes 63 / 85 The straight line given by the equation x = 11 is? parallel to X axis passing through the point (0,11) parallel to Y axis passing through the origin 64 / 85 Let A = {1,2, 3, 4} and B = {4, 8,9,10}. A function f : A→ B given by f = {(1, 4),(2, 8),(3,9),(4,10)} is a? Many-one function Identity function Into function One-to-one function 65 / 85 A page is selected at random from a book. The probability that the digit at units place of the page number chosen is less than 7 is? 7/9 7/10 3/10 3/9 66 / 85 Two persons are standing ‘x’ metres apart from each other and the height of the first person is double that of the other. If from the middle point of the line joining their feet an observer finds the angular elevations of their tops to be complementary, then the height of the shorter person( in metres) is? x / √2 2x x / 2√2 √2 x 67 / 85 The HCF of two equal positive integers k, k is ____? m n k k² 68 / 85 If slope of the line PQ is 1/√3 then slope of the perpendicular bisector of PQ is? 1/ √3 zero -√3 √3 69 / 85 The probability a red marble selected at random from a jar containing p red, q blue and r green marbles is? p + q / (p +q +r) q / (p +q +r) p + r / (p +q +r) p / (p +q +r) 70 / 85 How many tangents can be drawn to the circle from an exterior point? zero two infinite one 71 / 85 In a hollow cylinder, the sum of the external and internal radii is 14 cm and the width is 4 cm. If its height is 20 cm, the volume of the material in it is? 56π cm³ 3600π cm³ 5600π cm³ 11200π cm³ 72 / 85 What will be the probability that a non – leap year will have 53 Saturdays? 1/8 1/7 1/5 1/9 73 / 85 The number of points of intersection of the quadratic polynomial x²+ 4x + 4 with the X axis is? 1 2 Zero or 1 zero 74 / 85 The sum of the exponents of the prime factors in the prime factorization of 1729 is? 3 4 1 2 75 / 85 In in a triangle ABC, BE is parallel to BC. AB = 3.6cm, AC = 2.4cm and AD = 2.1 cm then the length of AE is 3cm 4cm 8cm 1.4cm 76 / 85 Use Euclid’s Division Algorithm to find the Highest Common Factor (HCF) of 340 and 412? 3 4 2 1-Jan 77 / 85 A purse contains 10 notes of ₹2000, 15 notes of ₹500, and 25 notes of ₹200. One note is drawn at random. What is the probability that the note is either a ₹500 note or ₹200 note? 3 / 10 2 / 3 4 / 5 1 / 5 78 / 85 A frustum of a right circular cone is of height 16 cm with radii of its ends as 8cm and 20cm. Then, the volume of the frustum is? 3340π cm³ 3228π cm³ 3204π cm³ 3328π cm³ 79 / 85 If the radius of the base of a cone is tripled and the height is doubled then the volume is? unchanged Made 12 times Made 18 times Made 6 times 80 / 85 A solid sphere of radius x cm is melted and cast into a shape of a solid cone of same radius. The height of the cone is? 3 x cm 4 x cm x cm 2 x cm 81 / 85 The curved surface area of a right circular cone of height 15 cm and base diameter 16 cm is? 120π cm² 68π cm² 60π cm² 136π cm² 82 / 85 If Δ < 0? Real and Equal roots No Real root Real and Unequal roots None of these 83 / 85 If the HCF of 65 and 117 is expressible in the form of 65m -117 , then the value of m is ? 3 2 4 1 84 / 85 The values of a and b if 4x⁴ −24x³ + 76x² +ax +b is a perfect square are? 100, 120 -120 ,100 12, 10 10 ,12 85 / 85 Fill in the blanks for the following sequences 2, _____, 10, 17, 26,…? 9 4 2 5 Your score is Note: Once you start the test, you are not allowed to go back. Results won’t be generated if you quit the test. Complete the test within the given time. Once the time is over, the test will be submitted automatically. You can verify your answers at the result page.